Random evolutions in discrete and continuous time
نویسندگان
چکیده
منابع مشابه
Quantum measurements in continuous time, non-Markovian evolutions and feedback.
In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a f...
متن کاملRandom Evolutions
This article gives a short presentation of random evolutions. At first, the following two examples are presented: dynamical stochastic systems and increment processes both in Markov media. After, an introduction to semi-Markov Random evolution in a Banach space is given, where the previous evolutionary systems are obtained as particular cases. Finally, two abstract limit theorems of average and...
متن کاملRandom Walks on Discrete and Continuous Circles
We consider a large class of random walks on the discrete circle Z/(n), defined in terms of a piecewise Lipschitz function, and motivated by the “generation gap” process of Diaconis. For such walks, we show that the time until convergence to stationarity is bounded independently of n. Our techniques involve Fourier analysis and a comparison of the random walks on Z/(n) with a random walk on the...
متن کاملRandom Walks on Discrete and Continuous
We consider a large class of random walks on the discrete circle Z=(n), deened in terms of a piecewise Lipschitz function, and motivated by the \generation gap" process of Diaconis. For such walks, we show that the time until convergence to stationarity is bounded independently of n. Our techniques involve Fourier analysis and a comparison of the random walks on Z=(n) with a random walk on the ...
متن کاملDiscrete and Continuous Time in Physical Systems
We investigate the relationship between discrete and continuous time in dynamic physical systems. Employing the common-sense picture behind derivatives, differential equations are translated into discrete-time analogues. The properties of qualitative simulation in discrete time are discussed. It is flirthennore shown that discrete time can be embedded in continuous time in a natural way without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1979
ISSN: 0304-4149
DOI: 10.1016/0304-4149(79)90046-2